CS 4530: Fundamentals of Software Engineering
Module 4.1: Software Development Processes

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

e At the end of this lesson, you should be able to

e Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development

Review:
How to make sure we are building the right thing

LIGLL

How the customer How the project How the analyst Howﬂnpmumm What the customer
explainened it. leader understood it. designed it. really wanted.
Requirements Planning &

Implementation

Analysis Design

Software Process: Code + Fix

Build First
Version

| Modify until - - - - -
|

Customer satisfied

|
Lp '
Operations

!

Retirement

A brief history of software planning

NATO conference on Software Engineering + Outcomes

®Software was very inefficient

®Software was of low quality SOFTWARE ENGINEERING
®Software often did not meet requirements

®Projects were unmanageable and code difficult to maintain

®Software was never delivered

Report on a conference sponsored by the

. NATO SCIENCE COMMITTEE A ca " to aCtIOn . We
Garmisch, Germany, 7th to 11th October 1968
must study how to
build software

Chairman: Professor Dr. F. L. Baver

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969

Software Process: Waterfall (~1970)

Requirements systematic, sequential approach
Validate ‘ Quality Assurance at each phase before
Design continuing
Verify R

Implementation

Test

v

Operations

A

Retirement

Waterfall Model: Risk Assumptions

The cost to fix a defect grows exponentially with each development phase

Relative Cost to Fix Defect

Communication Planning Modeling Construction Deployment

Waterfall Process Improves on Code + Fix

Requirements

Validate N

Design

Verify

* Measurable progress with risk contained in each
phase

* Possible to estimate each phase based on past
projects

* Division of labor: Natural segmentation between
phases

g Implementation

Test

Operations

Retirement

Waterfall Model
adds process
overhead

Since formal quality assurance
happens at each phase, it’s
necessary to produce extremely
detailed...

e Requirements documents
* Desigh documents

e Source code with
documentation

Waterfall Model
Reduces Risk by
Preventing
Change

Traditional waterfall model: no way
to go back “up”

Waterfall Model: Applications

* What projects would this work well in?

Projects with tremendous uncertainty

Projects with long time-to-market

Projects that need extensive QA of requirements
and design

Projects for which the expense of the planning is
worth it

Classic examples: military/defense

* Warship that needs to have component interfaces last 80
years

* Spacecraft?

11

Waterfall Model produced Wasted Work
Product

* Wasted productivity can occur through each
phase’s QA process:
* Requirements that become obsolete
* Elaborate architectural designs never used

* Code that sits around not integrated and tested in
production environment, eventually discarded

 Documentation produced per requirements, but
never read

 What if we could eliminate that waste, and
reduce the cost of defects later in
development cycle?
* Example: with shorter time-to-market?

12

[terative Process (~1980s) are Waterfall

Variations

Initial Concept —I

Requirements
and Iteration
Planning

Next Iteration

Design and

Testing

Implement Acceptance

and Delivery

Operations

13

The Agile Model Reduces Risk by Embracing
Change (~2000)

* The Waterfall philosophy:

* "The project is too large and complex, and it will take
months (or years!) to plan, so once we come up with the
plan, that plan can not change”

* Reduce risk by proceeding in stages
* The Agile philosophy:

* The project is too large and compley, it is unlikely that
we will know exactly what we need right now, and to
some extent, we are inventing something new. We think
that as we make it, we will figure it out as we go”

e Reduce risk by limiting time on any one stage; then
reassess. (“time-boxing”)

14

Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org

15

Warning: Agile can be a buzzword

Deloitt The Agile Landscape v3 el Ll
eloitte.
- . Hll Rightshift Management 3.0
5C's of 3 Levels Portfolio WSIF Agle Archit 5 T SAfe P 4 versicns Fixed Software Mybeid Product Ar Risk Valoe é.\.'a's'\.) 4Mincsets Tum Delegation Kudos Meddiers 10 Moving
Agle Ponfolio, Backiog pontfolio rumway e Budget Pattems Planny ing fecycie Delivery Development erfall Mgmt Driven cycle + Model up the Poker Cards ’ ¥ Motvators
Mgmt Program, am;-ﬂ Dawe Context H goed
eam Framework :
Cc'fwu- ves (SOCF, H
of Prac 3 H
Crganise Ioo down Featur Area Scrum improvement Feature Overal : 0,
+ Botx Product _ of Service Teams Retrospect § Schneider
Up ton JOwner Scrums . H eadership Schneides
2 = otentially H Culture
3 levels coaching {org. team, tech) Shippabie Prod : {
j Large Enterprise H H
Scaled Scrum (LeSS) O umie s) i
Multi-team Vision > Casual 5 Dysfunctions of 1eamy :
design Foge g) O . s & e © O
workshop idiagrams Diagrams Viadle Minimum ADKAR Survey Team Improvement EXpIOnKony s ionanie o
Preduct Viatle Change t C eNPS KATA Days oree Sigma
|_Cynefin_] 2roject (MV?) EDDY 1nspections s Distitsrion
H Chaner ek |
: Ty O OO0 | Qe O 555
. maxin verviey
Undsrstiadieg; | Sende ankiony page Object uML Somain | B 8Wastes Kazen Kazen DCA
i L ‘.Ca'?o Q Relational Diagram Ooject burst btz [Deming cycie)
(Fromeworkt framewo Cotee ol © oo g Modelling The
precedes d Area : o O o
e Q) e Team) Y rese raming onstans | O D) |
Vobr o Ger Team " tempiate Jbn % Muda, Lead | - Cyde tme
Hypothesis Viiue stream Voice of ishuld s L | il e
b“o B e T il P roduct Develooment (FLOW)_Bbgie Gy’ gy Mora g
colaboration O Q 0 TO e L) fiow Conteot
- Decsion Product Personas Rules of O a O cus
Aftnity() 7] Visi Simglicity Kanben board Imglement Evolve Production Testing
Divergent / Ehmeg feedoack expenimentaily ‘
Divergent / Iar |
Convergent () Braingtorming O (combinea(™ Snition of Ready "
Thinking horizonta Auto-scale & Heal
P Context Relational E
Persgeciive PR o e Progra q O i
Top 5 (iceas) Maping () M ‘”‘"5 ‘-(d:‘coﬂ; c O 3' O i
O o O seature Togging
6leveisof JITModel Sipole CRC Cards Sustadable Metaphor Spikes N TeanvPaR) . il
C'hx'vqc gmpathy(() Planning Storming Defign Pade
Canvas 4305
"J"Cmt} Ecosyst :
cos \'E‘: O . Caed sont Frogramming T Feadback
® Rotation ~ Onsite e s e
pesign () Customer s S
Princigies () Hackathon | PrOBUCt Spriey s Agile Resease
aple Oy sioryobarss O - - i Backiog Planig Trains (ART)
User ey : 2 ’ Shit
Tectinn ndex " Test Acceptance Source Continupus * B Release
Test v Test ot ¥
Five £'s Q) O 9 5 O O O O estimates O 9 !-‘pw Q “ ol Tesing Code Integration e Tran
222 Matrix Joupn : me annin sieria conte - ngine
P2Matri JOUNSY Guided Defne Faciitawed Doblin's 10 Development O box Refactoring driven Yo (e O™ y Fogoetr
. T Tour Success workshops types of s Marick's Test Driven .
SPICE $ innovation t e
H 5 Test Development =t &0
=) : T (@I 90 poDcument Retrcspective BEE" Y categories Test vl
Busiosks Dynamic System Development Method (DSDM) s iz QS;‘J monte Autemazion -
‘) oo e s 1 1
I, @ T oy T .0 By S O Outomated visua
feasiity ProjeRt BusiBess RiskLog Delvery Saselined Solution '} MdSCow = Mamt j dashboard
Assessment apw ach Cage Plan Requirements Architectuf® independent 5 Mikado erSion aretact S ¥ ¢
ueshonnaire Goal Nawely Focusing Dependency Cis rm mnm Control '3 s Efvi vo&ncn's
{O O O Qs O, 3 Steps Map e o
Teade off = R ® o ‘,a,, Componentsed | 2
. < 4+1View Emerging Update when User e : o NhieRe o Brarching
3 Siders architecture DcSé:'- ifhus Casel . = S od Tes 1 Strategy
- lecx ~ » Automats t { 9
: S © O O O & O 4 AR A
4 Osmotic Increment; Focus Scae Valking Delphs Exploratory Incremental Team Safety CDEL s O s
Communication Re-architecture | Period method by Skeleton estimation Ra 360 degree Aschitecture Sa%e {user method
(2he} wou v reviews space solution) selection Mock Coiec
Discover [Dellver] Release

Agile Values Embrace Change

Compare to problems in waterfall:

* Requirements that become obsolete
* Don’t make detailed requirements until you need them

* Elaborate architectural designs never used
* Don’t design until you need

* Code that sits around not integrated and tested in
production environment, eventually discarded
* Integrate and test continuously

* Documentation produced per requirements, but never
read

 Don’t require documentation

Or only as much documentation
as you really need.

17

Agile Practice: Everyone is Responsible for
Quality

* “Collective ownership”

* Requirements (user stories) are developed

collaboratively with customer, and are negotiable
(INVEST qualities)

 Functional and non-functional correctness is checked
on the cheap, and often

* Developers improve code anywhere in the system if
they see the opportunity

* Many parallels with “Toyota Process System;” a variety
of other software processes developed in the 90’s share
these basic values

18

Agile requires quality assurance processes

e Quality is everyone’s responsibility

* Multiple processes work together to ensure quality:
* unit testing/TDD
* mix of unit tests & integration tests (we'll see more of this)
* code review
* continuous integration
 continuous deployment (A/B, canaries, etc.)

e guality includes non-functional requirements (resource
consumption, response time) or generally speaking extensibility,
maintainability, etc.

19

Agile Empowers Workers to Improve Processes:
Toyota Production System (1990’s)

Agile Processes are Iterative

Agile Process Model

Initial Concept ‘l
Iterative Waterfall Model

Requirements
and Iteration
Planning

--------------------------- Next Iteration

Design and
Implement

A

Key Idea: Small Continuous Releases

Acceptance
Testing
and Delivery

A\ 4

Operations

21

Agile Processes Reduce Risk by Time Boxing

e Each “iteration” is called a “sprint”

. : : Time Box Time Box
e Each sprint has a fixed duration 15t Iteration 2nd Iteration

Scope Scope

* Scope of features in a sprint is determined
by the team

e Key insight: planning might be a guess at
first, but gets better with time

* More on agile planning & estimation in
the next module

22

Agile Practice: Test Driven Development
(TDD)

User story &

[1. Start here] conditions of
satisfaction

{2. Write a test J

{5. Strengthen]

[3. Write code]
Test

[4. Refactor design]

Code Review is Agile Practice

¢ A COde FEVieW |S the prOCGSS |n Wthh Ranked Motivations From Developers
. Top [1 Second [Third N
the author of some code is asked to ' . J l
. . . Finding defects | | | I
explain it to their peers: Gode Improvement | | | —
° What purpose the COde has’ Alternative Solutions | | | s

. . Knowledge Transfer |:|:_
 How the code accomplishes this purpose Team Awareness| [N

o . . . Improving Dev Process I:l:-
How the author is confident of this Share Codo Ownerstp | T T TN

information, Avoid Build Breaks | [[

* E.g., show results of running tests (Cl results) Track Rationale | [[TN
Team Assessment D:-

* A code review often concerns a code 0 200 %0 e
Change (”diff”) Responses

Agility and You

* In your project, you can display agility in some of the following ways:
* Renegotiate specs
* Reorder priorities
* Alter implementation strategy
* Improve team communication patterns

* If you are agile, you can adjust these things to deliver your product on
time and get a good grade ©

25

Learning Goals for this Lesson

e At the end of this lesson, you should be able to

e Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development

26

	Default Section
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 4.1: Software Development Processes
	Slide 2: Learning Goals for this Lesson
	Slide 3: Review: How to make sure we are building the right thing
	Slide 4: Software Process: Code + Fix
	Slide 5: A brief history of software planning
	Slide 6: Software Process: Waterfall (~1970)
	Slide 7: Waterfall Model: Risk Assumptions
	Slide 8: Waterfall Process Improves on Code + Fix
	Slide 9: Waterfall Model adds process overhead
	Slide 10: Waterfall Model Reduces Risk by Preventing Change
	Slide 11: Waterfall Model: Applications
	Slide 12: Waterfall Model produced Wasted Work Product
	Slide 13: Iterative Process (~1980s) are Waterfall Variations
	Slide 14: The Agile Model Reduces Risk by Embracing Change (~2000)
	Slide 15: Agile Manifesto
	Slide 16: Warning: Agile can be a buzzword
	Slide 17: Agile Values Embrace Change
	Slide 18: Agile Practice: Everyone is Responsible for Quality
	Slide 19: Agile requires quality assurance processes
	Slide 20: Agile Empowers Workers to Improve Processes: Toyota Production System (1990’s)
	Slide 21: Agile Processes are Iterative
	Slide 22: Agile Processes Reduce Risk by Time Boxing
	Slide 23: Agile Practice: Test Driven Development (TDD)
	Slide 24: Code Review is Agile Practice
	Slide 25: Agility and You
	Slide 26: Learning Goals for this Lesson

