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Learning Goals for this Lesson

e At the end of this lesson, you should be able to

e Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development



Review:
How to make sure we are building the right thing
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Software Process: Code + Fix
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A brief history of software planning

NATO conference on Software Engineering + Outcomes

®Software was very inefficient

®Software was of low quality SOFTWARE ENGINEERING
®Software often did not meet requirements

®Projects were unmanageable and code difficult to maintain

®Software was never delivered

Report on a conference sponsored by the

. NATO SCIENCE COMMITTEE A ca " to aCtIOn . We
Garmisch, Germany, 7th to 11th October 1968
must study how to
build software

Chairman: Professor Dr. F. L. Baver

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969




Software Process: Waterfall (~1970)

Requirements systematic, sequential approach
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Waterfall Model: Risk Assumptions

The cost to fix a defect grows exponentially with each development phase

Relative Cost to Fix Defect

Communication Planning Modeling Construction  Deployment



Waterfall Process Improves on Code + Fix

Requirements

Validate N

Design

Verify

* Measurable progress with risk contained in each
phase

* Possible to estimate each phase based on past
projects

* Division of labor: Natural segmentation between
phases

g Implementation

Test

Operations

Retirement




Waterfall Model
adds process
overhead

Since formal quality assurance
happens at each phase, it’s
necessary to produce extremely
detailed...

e Requirements documents
* Desigh documents

e Source code with
documentation




Waterfall Model
Reduces Risk by
Preventing
Change

Traditional waterfall model: no way
to go back “up”




Waterfall Model: Applications

* What projects would this work well in?

Projects with tremendous uncertainty

Projects with long time-to-market

Projects that need extensive QA of requirements
and design

Projects for which the expense of the planning is
worth it

Classic examples: military/defense

* Warship that needs to have component interfaces last 80
years

* Spacecraft?
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Waterfall Model produced Wasted Work
Product

* Wasted productivity can occur through each
phase’s QA process:
* Requirements that become obsolete
* Elaborate architectural designs never used

* Code that sits around not integrated and tested in
production environment, eventually discarded

 Documentation produced per requirements, but
never read

 What if we could eliminate that waste, and
reduce the cost of defects later in
development cycle?
* Example: with shorter time-to-market?
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[terative Process (~1980s) are Waterfall

Variations

Initial Concept —I

Requirements
and Iteration
Planning

_____________________________________________

Next Iteration

Design and

Testing

Implement Acceptance

and Delivery

Operations
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The Agile Model Reduces Risk by Embracing
Change (~2000)

* The Waterfall philosophy:

* "The project is too large and complex, and it will take
months (or years!) to plan, so once we come up with the
plan, that plan can not change”

* Reduce risk by proceeding in stages
* The Agile philosophy:

* The project is too large and compley, it is unlikely that
we will know exactly what we need right now, and to
some extent, we are inventing something new. We think
that as we make it, we will figure it out as we go”

e Reduce risk by limiting time on any one stage; then
reassess. (“time-boxing”)
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Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org
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Warning: Agile can be a buzzword
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Agile Values Embrace Change

Compare to problems in waterfall:

* Requirements that become obsolete
* Don’t make detailed requirements until you need them

* Elaborate architectural designs never used
* Don’t design until you need

* Code that sits around not integrated and tested in
production environment, eventually discarded
* Integrate and test continuously

* Documentation produced per requirements, but never
read

 Don’t require documentation

Or only as much documentation
as you really need.
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Agile Practice: Everyone is Responsible for
Quality

* “Collective ownership”

* Requirements (user stories) are developed

collaboratively with customer, and are negotiable
(INVEST qualities)

 Functional and non-functional correctness is checked
on the cheap, and often

* Developers improve code anywhere in the system if
they see the opportunity

* Many parallels with “Toyota Process System;” a variety
of other software processes developed in the 90’s share
these basic values
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Agile requires quality assurance processes

e Quality is everyone’s responsibility

* Multiple processes work together to ensure quality:
* unit testing/TDD
* mix of unit tests & integration tests (we'll see more of this)
* code review
* continuous integration
 continuous deployment (A/B, canaries, etc.)

e guality includes non-functional requirements (resource
consumption, response time) or generally speaking extensibility,
maintainability, etc.

19



Agile Empowers Workers to Improve Processes:
Toyota Production System (1990’s)




Agile Processes are Iterative

Agile Process Model

Initial Concept ‘l
Iterative Waterfall Model

Requirements
and Iteration
Planning

--------------------------- Next Iteration

Design and
Implement

A

Key Idea: Small Continuous Releases

Acceptance
Testing
and Delivery

A\ 4

Operations
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Agile Processes Reduce Risk by Time Boxing

e Each “iteration” is called a “sprint”

. : : Time Box Time Box
e Each sprint has a fixed duration 15t Iteration 2nd Iteration

Scope Scope

* Scope of features in a sprint is determined
by the team

e Key insight: planning might be a guess at
first, but gets better with time

* More on agile planning & estimation in
the next module
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Agile Practice: Test Driven Development
(TDD)

User story &

[1. Start here ] conditions of
satisfaction

{2. Write a test J

{5. Strengthen ]

[3. Write code ]
Test

[4. Refactor design ]




Code Review is Agile Practice
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Agility and You

* In your project, you can display agility in some of the following ways:
* Renegotiate specs
* Reorder priorities
* Alter implementation strategy
* Improve team communication patterns

* If you are agile, you can adjust these things to deliver your product on
time and get a good grade ©
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Learning Goals for this Lesson

e At the end of this lesson, you should be able to

e Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development
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